首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5447篇
  免费   1028篇
  国内免费   560篇
化学   3739篇
晶体学   64篇
力学   220篇
综合类   73篇
数学   472篇
物理学   2467篇
  2024年   7篇
  2023年   127篇
  2022年   123篇
  2021年   160篇
  2020年   205篇
  2019年   203篇
  2018年   191篇
  2017年   147篇
  2016年   268篇
  2015年   270篇
  2014年   274篇
  2013年   352篇
  2012年   519篇
  2011年   606篇
  2010年   360篇
  2009年   364篇
  2008年   366篇
  2007年   327篇
  2006年   284篇
  2005年   229篇
  2004年   195篇
  2003年   132篇
  2002年   156篇
  2001年   120篇
  2000年   123篇
  1999年   120篇
  1998年   99篇
  1997年   114篇
  1996年   87篇
  1995年   85篇
  1994年   65篇
  1993年   81篇
  1992年   43篇
  1991年   62篇
  1990年   44篇
  1989年   34篇
  1988年   16篇
  1987年   14篇
  1986年   18篇
  1985年   15篇
  1984年   10篇
  1983年   10篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有7035条查询结果,搜索用时 78 毫秒
991.
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain–domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.  相似文献   
992.
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C−C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C−O/C−N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.  相似文献   
993.
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C−H bonds and commonly available amines is a major synthetic challenge. An allylic C−H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.  相似文献   
994.
Single crystal surfaces with highly coordinated sites very often hold high specific activities toward oxygen reduction reaction (ORR) and others. Transposing their high specific activity to practical high-surface-area electrocatalysts remains challenging. Here, ultrathin Pt(100) alloy surface is constructed via epitaxial growth. The surface shows 3.1–6.9 % compressive strain and bulk-like characteristics as demonstrated by site-probe reactions and different spectroscopies. Its ORR activity exceeds that of bulk Pt3Ni(100) and Pt(111) and presents a 19-fold increase in specific activity and a 13-fold increase in mass activity relative to commercial Pt/C. Moreover, the electrochemically active surface area (ECSA) is increased by 4-fold compared to traditional thin films (e.g. NSTF), which makes the catalyst more tolerant to voltage loss at high current densities under fuel cell operation. This work broadens the family of extended surface catalysts and highlights the knowledge-driven approach in the development of advanced electrocatalysts.  相似文献   
995.
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.  相似文献   
996.
Synthesis of highly active and durable oxygen evolution reaction (OER) catalysts applied in acidic water electrolysis remains a grand challenge. Here, we construct a type of high-loading iridium single atom catalysts with tunable d-band holes character (h-HL−Ir SACs, ∼17.2 wt % Ir) realized in the early OER operation stages. The in situ X-ray absorption spectroscopy reveals that the quantity of the d-band holes of Ir active sites can be fast increased by 0.56 unit from the open circuit to a low working potential of 1.35 V. More remarkably, in situ synchrotron infrared and Raman spectroscopies demonstrate the quick accumulation of *OOH and *OH intermediates over holes-modulated Ir sites in the early reaction voltages, achieving a rapid OER kinetics. As a result, this well-designed h-HL−Ir SACs exhibits superior performance for acidic OER with overpotentials of 216 mV @10 mA cm−2 and 259 mV @100 mA cm−2, corresponding to a small Tafel slope of 43 mV dec−1. The activity of catalyst shows no evident attenuation after 60 h operation in acidic environment. This work provides some useful hints for the design of superior acidic OER catalysts.  相似文献   
997.
浸没沉淀相转化法制备结晶性聚合物微孔膜的研究进展   总被引:2,自引:0,他引:2  
综述了近期关于结晶性聚合物浸没沉淀相转化法制备微孔膜的成膜机理和实验研究工作.对制膜体系的热力学、相分离、成膜机理进行了分析和总结,并依此解析了结晶性聚合物膜中常见的结构形态,最后从热力学和动力学两个方面对影响膜结构形态的因素如聚合物的浓度、铸膜液的组成、凝固浴的组成等进行了详细的讨论.  相似文献   
998.
Experimental results supported by density functional theory calculations show carbonate formation and reaction on atomic oxygen precovered Au(111). Oxygen mixing is observed in temperature-programmed desorption measurements when a Au(111) precovered with 16O is exposed to isotopically labeled CO2 (C18O2). The presence of 16O18O is attributed to surface carbonate formation and decomposition at surface temperatures ranging from 77-400 K and initial oxygen coverages ranging from 0.18-2.1 ML. A reaction probability on the order of 10(-4) and an activation energy of -0.15+/- 0.08 eV are estimated for this reaction.  相似文献   
999.
Water-oxygen interactions and CO oxidation by water on the oxygen-precovered Au(111) surface were studied by using molecular beam scattering techniques, temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. Water thermally desorbs from the clean Au(111) surface with a peak temperature of approximately 155 K; however, on a surface with preadsorbed atomic oxygen, a second water desorption peak appears at approximately 175 K. DFT calculations suggest that hydroxyl formation and recombination are responsible for this higher temperature desorption feature. TPD spectra support this interpretation by showing oxygen scrambling between water and adsorbed oxygen adatoms upon heating the surface. In further support of these experimental findings, DFT calculations indicate rapid diffusion of surface hydroxyl groups at temperatures as low as 75 K. Regarding the oxidation of carbon monoxide, if a C (16)O beam impinges on a Au(111) surface covered with both atomic oxygen ( (16)O) and isotopically labeled water (H 2 (18)O), both C (16)O (16)O and C (16)O (18)O are produced, even at surface temperatures as low as 77 K. Similar experiments performed by impinging a C (16)O beam on a Au(111) surface covered with isotopic oxygen ( (18)O) and deuterated water (D 2 (16)O) also produce both C (16)O (16)O and C (16)O (18)O but less than that produced by using (16)O and H 2 (18)O. These results unambiguously show the direct involvement and promoting role of water in CO oxidation on oxygen-covered Au(111) at low temperatures. On the basis of our experimental results and DFT calculations, we propose that water dissociates to form hydroxyls (OH and OD), and these hydroxyls react with CO to produce CO 2. Differences in water-oxygen interactions and oxygen scrambling were observed between (18)O/H 2 (16)O and (18)O/D 2 (16)O, the latter producing less scrambling. Similar differences were also observed in water reactivity toward CO oxidation, in which less CO 2 was produced with (16)O/D 2 (16)O than with (16)O/H 2 (16)O. These differences are likely due to primary kinetic isotope effects due to the differences in O-H and O-D bond energies.  相似文献   
1000.
A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号